

SDH Farm Tour

Managing second-round grass and milk urea

Wednesday 8 October, 11am – 1pm SDH Cow Shed, 611 Ryal Bush Wallacetown Rd

Insights. Conversations. Practical tools for the season ahead.

Thank you for joining us at the Southern Dairy Hub today. This event is an opportunity to walk the paddocks, hear from experts, and have practical discussions about pasture management, milk urea, and feeding strategies at this key point in the season.

Our guest speakers bring specialist expertise and on-farm know-how:

- Dr Charlotte Westwood (PGG Wrightson Seeds) will cover managing pasture quality for the second round, testing pasture quality, and interpreting milk urea results.
- Leo Pekar (FarmWise) will talk about balancing pasture intakes before mating, identifying key trigger points, and using the feed wedge to support decision-making.

Whether you're here in person or reading this online, we hope the presentations give you fresh ideas, practical tips, and confidence to apply them back on farm.

Andrea DixonSouthern Dairy Hub General Manager

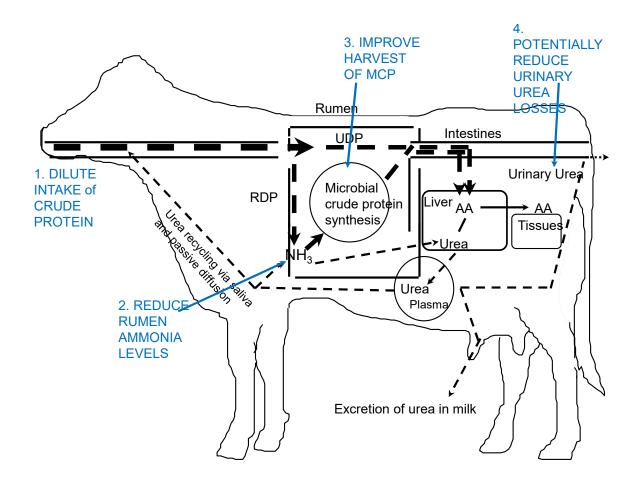
Guest speaker: Charlotte Westwood

Charlotte is a veterinarian and nutritionist with a special interest in the links between forage nutrition, ruminant reproduction and animal health.

After graduating from Massey University, she worked in a large animal practice in Te Awamutu before completing a PhD in dairy cow nutrition and reproduction at the University of Sydney. She then spent seven years in farm consultancy, based in both New Zealand and southern NSW, before returning to NZ in 2009 to join PGG Wrightson Seeds.

Charlotte's Take-Home Messages

1. Pasture Quality Basics


- Pasture is the main feed base.
- Pasture quality is more than just energy (MJME). Fibre (NDF/ADF), lignin and water soluble carbohydrates affect how much cows can eat and how easily they digest it.
- Second-round pasture is often the best quality of the year (higher energy and protein, lower fibre and lignin).

2. Practical assessment tips

- Pluck samples like a cow would is it easy or hard to tear?
- Yaste/feel the pasture: soft vs coarse, sweet vs fibrous.
- Watch cows: are they grazing easily or struggling?
- Sheck dung consistency it reflects diet quality.

3. Managing pasture quality

- ightharpoonup Tidy first-round residuals so clumps don't affect regrowth.
- Take surpluses as baleage or silage to reset the round with better quality.
- Use topping strategically.
- Clover is higher quality than ryegrass.
- Choose ryegrass cultivars carefully to spread risk of quality "crash."

4. Milk Urea (MU)

- MU is a by-product of protein breakdown.
- Urea travels throughout the body in the bloodstream before being excreted in the urine. Because it is such a small molecule, it also passes into the udder and milk. This means milk urea can be used as a rough proxy for dietary crude protein (CP), particularly the amount of rumen degradable protein (RDP) being broken down in the rumen.
- High MU often reflects very high crude protein in pasture common in Southland.
- Low MU isn't always linked to the diet; other factors (stage of lactation, cow genetics, cow condition) play a role.
- Before feeding extra protein in early lactation, test pasture and supplements to check CP levels. Unnecessary protein is costly, and if not matched with enough dietary energy it can drive milk production at the expense of body condition a risk for cows about to be mated.
- MU is a useful indicator, but don't base all decisions just on MU overall energy balance matters for reproduction success.

For full notes, graphs and references, you can download Charlotte's complete presentation at **southerndairyhub.co.nz/farmtour2025**

Guest speaker:

Leo Pekar

Leo is a farm consultant supporting dairy farmers across Southland and South
Otago. With strong farming experience and knowledge, he focuses on getting the basics right in pasture-first systems to lift production and profitability while keeping things simple and sustainable.

He works alongside farmers to turn challenges into opportunities, from finetuning feed plans and improving financial performance to building resilient businesses. Leo is passionate about people on farm and delivering practical solutions that work in the paddock.

Leo's Take-Home Messages

1. Grass grows grass - quality matters

The foundation of pasture management is maintaining quality.

Delay grazing 10-15% 30-40% 45-55%

Days post-grazing

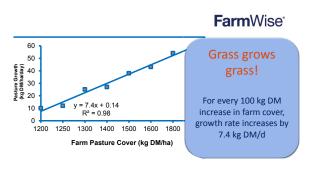
How Pasture Grows

4500

4000

3500

3000 2500 2000


1500

1000

500

Pasture yield, kg DM/ha

Spring Pasture Growth

2. Using trigger points and farm walk data

- Set your pre-grazing cover target: (stocking rate × intake × round length) + residual.
- Round length should be based on leaf stage ($2\frac{1}{2}$ -3 leaves, ~3000+).
- Paddocks above target: cut for silage.
- Paddocks below target: feed supplements (don't speed up the round).

Setting trigger points and using farm walk data

Pre-grazing cover target	(stocking rate x intake x round length) + residual	=
Round length	(pre-grazing cover - residual) / stocking rate / intake	=

3. Rules for mowing

- Start mowing as soon as growth exceeds demand.
- If mowing in front of cows, allow an extra 100 kgDM/ha cover.
- Mow night breaks after morning milking (no more than 50-60% of the daily grazing area).
- Graze both night and day paddocks so the mower covers the whole paddock.
- Follow mower with urea at 65 kg/ha.

4. Mowing in front vs topping behind

- Mowing in front of cows:
 - Increases intakes, creates wilting, improves palatability and harvesting efficiency.
 - But doesn't improve quality, and cows lose the ability to select.
- y Topping (after cows):
 - Lets cows choose what they eat.
 - Milk solids % and production often rise.
 - Spreads dung across paddock (and tractor).
- Front-mowing lifts intake, topping supports selection and milk solids.

For full notes, graphs and references, you can download Leo's complete presentation at **southerndairyhub.co.nz/farmtour2025**

R J Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand

0508 HILL LAB (44 555 22)
 → +64 7 858 2000
 ✓ mail@hill-labs.co.nz
 ⊕ www.hill-labs.co.nz

shvpv1

Certificate of Analysis

Client: Southern Dairy Hub

Address: 611 Ryal Bush Wallacetown Road

RD 4

Invercargill 9874

Lab No: Date Received:

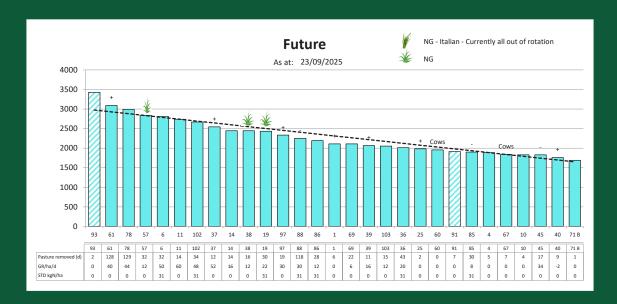
Date Reported:

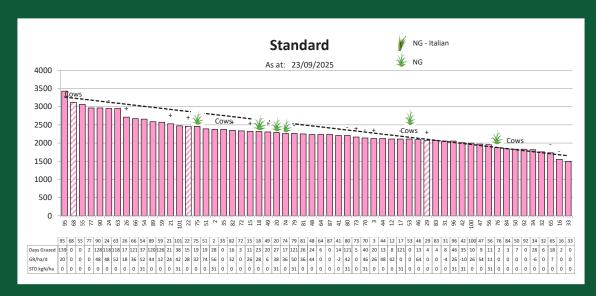
Quote No: Order No:

Client Reference:

Submitted By: Charissa Thomas

	3997407
ived:	01-Oct-2025
rted:	02-Oct-2025


Sample	Name:	Paddock 57	Paddock 61	Paddock 63	Paddock 66	Paddock 78	Paddock 90
•		New Grass 24/09/25	24/09/25	24/09/25	24/09/25	24/09/25	24/09/25
Lab Nu	ımber:	3997407.1	3997407.2	3997407.3	3997407.4	3997407.5	3997407.6
Sample	Type:	Mixed Pasture	Mixed Pasture	Mixed Pasture	Mixed Pasture	Mixed Pasture	Mixed Pasture
Sample Type	Code:	P1	P1	P1	P1	P1	P1
Nitrogen	%	2.8	3.0	3.3	3.2	2.7	2.9
Nitrogen	%DM	2.9	3.2	3.4	3.4	2.8	3.0
Crude Protein	%DM	17.8	19.7	21.4	21.1	17.7	18.8
Acid Detergent Fibre (seq)*	%DM	21.3	21.8	21.7	19.8	20.9	20.7
Neutral Detergent Fibre*	%DM	42.8	40.1	40.8	39.0	40.3	41.0
Lignin*	%DM	2.3	2.7	2.7	2.2	< 2.0	< 2.0
Ash*	%DM	9.8	9.1	9.1	9.6	8.4	8.4
Organic Matter*	%DM	90.2	90.9	90.9	90.4	91.6	91.6
Soluble Sugars*	%DM	14.2	12.9	13.0	13.1	13.6	13.5
Starch*	%DM	0.8	0.7	0.6	< 0.5 #1	0.8	0.7
Crude Fat*	%DM	3.4	3.3	3.3	3.5	2.9	3.2
Digestibility of Organic Matter Dry Matter (DOMD)*	rin %	77.2	78.3	77.7	78.1	79.1	79.5
Metabolisable Energy* M	J/kgDM	12.3	12.5	12.4	12.5	12.7	12.7
Non Structural Carbohydrate	* %DM	26.1	27.8	25.4	26.8	30.8	28.7
OMD in-vivo*	%DM	85.6	86.1	85.5	86.4	86.4	86.8


Plant Analysis Results							
Sample Name:		Paddock 95 24/09/25	Paddock 6 24/09/25	Paddock 24 24/09/25			
Lab No	Lab Number:		3997407.8	3997407.9			
Sample Type:		Mixed Pasture	Mixed Pasture	Mixed Pasture			
Sample Type	Code:	P1	P1	P1			
Nitrogen	%	2.4	3.4	2.8	-	-	-
Nitrogen	%DM	2.5	3.6	2.9	-	-	-
Crude Protein	%DM	15.5	22.4	17.8	-	-	-
Acid Detergent Fibre (seq)*	%DM	19.8	20.4	20.2	-	-	-
Neutral Detergent Fibre*	%DM	38.4	38.0	39.0	-	-	-
Lignin*	%DM	< 2.0	2.1	< 2.0	-	-	-
Ash*	%DM	8.6	9.5	8.5	-	-	-
Organic Matter*	%DM	91.4	90.5	91.5	-	-	-
Soluble Sugars*	%DM	14.8	14.6	14.7	-	-	-
Starch*	%DM	0.6	0.6	0.9	-	-	-
Crude Fat*	%DM	3.0	3.5	2.9	-	-	-
Digestibility of Organic Matte Dry Matter (DOMD)*	rin %	79.0	81.0	80.3	-	-	-
Metabolisable Energy* N	IJ/kgDM	12.6	13.0	12.8	-	-	-
Non Structural Carbohydrate	* %DM	34.4	26.5	31.7	-	-	-
OMD in-vivo*	%DM	86.5	89.5	87.8	-	-	-

Demonstration: Research in Action

At SDH, our key comparison is between two herds: the standard herd, where decisions are made at herd level, and the future herd, where decisions are made at cow level. This side-by-side model lets us test new ideas in real-world conditions.

The following feed wedge is a snapshot of pasture cover and a handy tool for proactive pasture management.

